How do you derive the derivative of sec^3x?  

pramodpandey | Student


`=(cos(x))^(-3)`          (i)

we know

`d /dx (cos(x))=-sin(x)`

`d/dx (x^n)=nx^(n-1)`

differentiate (i) with respect to x, pply chain rule ,we have











oldnick | Student

I'tafunction og function:


Analisys teachs us :


So in this case :  `f(x)= g^3(x)`    and `g(x)= sec x= 1/cosx`

`f'(x)=3sec^2x g'(x)`   (1)

Now `g(x)` too is a function of function

`g(x)=g[h(x)]`   where:   `g(x)=1/h(x)`   and `h(x)=cosx`

thus  `g'[h(x)]=g'(x)h'(x)= (sinx)/(cos^2x)`  (2)

So that substituing (2) in (1):

`f'(x)= (3sec^2x sinx)/(cos^2x)=3sec^4x sinx`

Access hundreds of thousands of answers with a free trial.

Start Free Trial
Ask a Question