You may use the quadratic formula such that:

`x_(1,2) = (-3+-sqrt(3^2 - 4*1*2))/2`

`x_(1,2) = (-3+-sqrt(9-8))/2`

`x_(1,2) = (-3+-1)/2`

`x_1 = (-3+1)/2 =gt x_1 = -1`

`x_2 = (-3-1)/2 =gt x_2 = -2`

**Hence, evaluating solutions to equation `x^2 + 3x + 2 = 0 ` yields `x_1 = -1` and `x_2 = -2` .**