How do I rationalize imaginary denominators? Such as..[ 5i/-2-6i ]? I'm so lost in Algebra II. It tells me to simplify the problem?
- print Print
- list Cite
Expert Answers
briefcaseTeacher (K-12)
calendarEducator since 2011
write3,177 answers
starTop subjects are Math, Science, and Business
Simplify `(5i)/(-2-6i)` :
You can look at this as a simplification, or as division by imaginary numbers. The process is the same.
The answer will be a complex number of the form a+bi with a and b real numbers. There will not be any imaginary numbers in the denominator.
To get rid of the imaginary number in the denominator, we multiply the fraction by a special form of 1; the complex conjugate of the denominator over itself. (If z=a+bi then the complex conjugate of z is `bar(z)=a-bi` ) This process is called rationalization -- a similar procedure is used to get rid of radicals or radical expressions from the denominator.
`(5i)/(-2-6i)*(-2+6i)/(-2+6i)`
`=(-10i+30i^2)/(4-36i^2)` but `i^2=-1` by definition so
`=(-30-10i)/(40)`
`=-3/4-1/4i` which is the simplified form we seek.
** Multiplying by the complex conjugate makes use of the difference of two squares form; `(a+b)(a-b)=a^2-b^2` . This eliminates the term with i, so the denominator is now real. **
Related Questions
- Simplify the expression: (-10 - 5i) / (-6+6i)
- 1 Educator Answer
- Simplify with rational denominator: ((1+i)(2-i))/((2+i)*i)
- 2 Educator Answers
- Simplify the expression. Give the exact value in simplified form. Rationalize any denominators....
- 1 Educator Answer