How to differeniate between local maxima & minima and global maxima & minima and extreme values?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The extreme points of the graph of a function are those where the sign of the slope of the tangent changes. For a function f(x), at the extreme points f'(x) = 0. If at an extreme point for x = c the value of f(x) is less than the value of f(x) for values of x lying in an interval around c, there exists a minima at that extreme point. On the other hand if at an extreme point for x = c the value of f(x) is greater than the the value of f(x) for x lying in an interval around c, there is a maxima at f(x).

To differentiate a maxima from a minima look at the sign of the second derivative f''(x) at x = c. If f''(c) is negative the point is a maxima and if f''(c) is positive the point is a minima.

The global maxima and minima exist for some functions. At the global maxima the value of f(x) for x = c is greater than f(x) for any other value of x. Similarly for the global minima, the value of f(x) for x = c is less than the value of f(x) for any other value of x.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial