How can you tell if a solution is a viable?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

I will give two examples that determine whether if an answer is viable.

Example 1:  `x^2-1 = 0`

Add one on both sides and take the square root.

`x^2=1`

`x =+- sqrt1`

If we plugged these two solutions back to the original equation, we can satisfy that:

`sqrt1^2-1 = 0`

`(-sqrt1)^2-1 = 0`

Therefore,  are both viable solutions.

Example 2:  `(x^2-1)/(x-1) =2`

The numerator can be factored to:

`((x-1)(x+1))/(x-1) =2`

The (x-1) terms cancel, and we have:

`x+1=2`

`x=1`

If we substitute  back to , we have:

`(1^2-1)/(1-1) =2`

`0/0 = 2`

The left side becomes indeterminate, which means that  cannot be a solution as our domain cannot be one.

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

If you are asking how to tell if an answer is viable; a viable answer, means that our result is a possible solution to the question being asked. After solving a question or an equation in Mathematics, we can use the result to prove that it is a possible, or viable, answer. For example, if we have the following equation:

`5+x=7`

if we solve for X we will have:

`x=2`

Then to show that it is a viable answer, we have to "plug in" the value that we calculated for X into the original equation:

`5+(2)=7`

Since `7=7`, x=2 is a viable answer to this question.

Another example:

If we have these two equations:

`y=x+1` and `y+1=2x`

then by using substitution, we can solve the equations for x first, then y, and finally prove that the answers are correct by plugging them in:

`(x+1)+1=2x`

`x+2=2x`     combine like terms

`2=x`      Subtract X from both sides

Then we can use the value that we calculated for X to find what Y is:

`y=(2)+1`        OR     `y+1=2(2)`

No matter which one we plug X into, we will get the following result for Y:

`y=3`

So in order to tell if the ordered pair `(2,3)` satisfies both equations, or is a viable answer for both, we must plug in the x and y values into one of the original equations to test it:

`(3)=(2)+1`

`3=3`

Since, 3=3 is a valid statement of equality, we know that the answers that we have calculated are both viable answers to this problem.

Approved by eNotes Editorial Team

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial