# Hi. I was wondering if someone would please help me with this problem. Let the vectors u=(-3,4) and v=(5,-2). Find |2u-v|. Thank you! :)

*print*Print*list*Cite

Expert Answers

sciencesolve | Certified Educator

You need to evaluate the magnitude of the new vector `2bar u - bar v` , hence, you need to evaluate it, such that:

`2bar u - bar v = 2*<-3,4> - <5,-2>`

`2bar u - bar v = <-6,8> - <5,-2> => 2bar u - bar v = <-6-5, 8-(-2)>`

`2bar u - bar v = <-11,10>`

Evaluating the magnitude of vector `2bar u - bar v` yields:

`|2bar u - bar v| = sqrt((-11)^2 + 10^2)`

`|2bar u - bar v| = sqrt(221)`

**Hence, evaluating the magnitude of vector 2bar u - bar v yields **`|2bar u - bar v| = sqrt(221).`

Student Comments

pramodpandey | Student

We have given vectors u=(-3,4) and vector v=(5,-2). Find |2u-v|.

Sol. we have

2u=(-6,8)

-v=(-5,2)

Thus

2u-v=(-6,8)+(-5,2)

= (-11,10)

`|2u-v|=sqrt((-11)^2+10^2)`

`=sqrt(121+100)`

`=sqrt(221)`

`=14.87` approx