A hockey puck on a frozen pond with an initial speed of 18.50 m/s stops after sliding a distance of 224.1 m. Calculate the average value of the coefficient of kinetic friction between the puck and the ice

Expert Answers

An illustration of the letter 'A' in a speech bubbles

A hockey puck on a frozen pond has an initial speed 18.50 m/s, it stops after sliding a distance of 224.1 m. If the coefficient of kinetic friction between the puck and the the ice surface is K, the frictional force acting on it is N*K where N is the normal force equal to M*g, M being the mass of the puck and g the acceleration due to gravity.

The deceleration due to the frictional force is K*g. The puck travels 224.1 m before stopping, use the formula v^2 - u^2 = 2*a*s.

18.5^2 - 0 = 2*K*g*224.1

As the gravitational acceleration is 9.8 m/s^2

18.5^2 = 2*K*9.8*224.1

=> K = 0.0779

The coefficient of kinetic friction between the puck the ice is 0.0779

Approved by eNotes Editorial Team

Posted on

Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial