Having the function fn(x)=x^n+n*x-1, demonstrate that fn is convex, for any n>2; n is a natural number.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

A function is convex over a region R if every point on the function in R lies beneath the line connecting the boundaries of R. The second derivative of a function can tell us whether a function is convex over a region: if and only if f''(x) > 0, then the region is convex.

So for f(x) = x^n + nx - 1

f'(x) = nx^(n-1) + n

f''(x) = n(n-1)x^(n-2)

Note that the natural numbers are the set {0, 1, 2, 3, ...}

So for n = {0,1}, f''(x) = 0

For n = 2, f''(x) = 2, so f(x) is convex.

For n > 2, f''(x) = N*x^(n-2), where N > 0 and n-2 > 0

Hence, for n-2 even f(x) is strictly convex for all x, and for n-2 odd f(x) is convex for x > 0.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team