The half-life of uranium-238 is 4.51 billion years, while that of uranium-235 is .707 billion years. 

Suppose that a sample contains equal amounts of uranium-238 and uranium-235 at the time of its formation.  If the proportion of uranium-238 to uranium-235 in the sample is currently 137.8 to 1, what is the age of the sample?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Use the formula for exponential growth or decay: P = Po e^(kt)

where P = life at certain time t          e = constant = 2.712828....

         Po = initial life

         k = growth or decay factor

         t = time

half life means half of the initial life, so P = Po/2

solve for the growth or decay factor, k

half life of uranium-238 at t = 4.51 (in billion)

Po/2 = Po e^(k  * 4.51)    cancel Po on both sides

1/2 = e ^ (4.51k)        it's okay to disregard the billion since the

                                    other given t is also in billion. remember

                                     unit consistency. take the natural log of

                                     both sides

ln(1/2) = ln e^(4.51k)       property: ln e = 1

-0.6931 = 4.51k         divide both sides by 4.51

k of U238 = -0.1536        unitless

*****************************************************

half life of uranium-235 at t = 0.707 (in billion)

Po/2 = Po e^(k  * 0.707)    cancel Po on both sides

1/2 = e ^ (0.707k)  it's okay to disregard the billion since the

                                 other given t is also in billion. remember

                                 unit consistency. take the natural log of

                                 both sides

ln(1/2) = ln e^(0.707k)       property: ln e = 1

-0.6931 = 0.707k         divide both sides by 4.51

k of U235 = -0.9804        unitless

 

take the ratio

137.8 = Po(u238) e^(-0.1536*t)   age was unknown. let it be t

   1         Po(u235) e^(-0.9804*t)      Po(u238) = Po(u235)

                                                           Po's cancel out

137.8 = e^(-0.1536t)            property: a^m   = a^(m-n)

    1        e^(-0.9804t)                           a^n  

 


137.8 = e^(-0.1536t+0.9804)t

137.8 = e^(0.8268t)            take ln of both sides

4.9258 = 0.8268t         divide both sides by 0.8268

t = 5.9576 billion years.      take note that we disregarded the billion  

                                             when we solved for k.

 

 

 

 

 

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial