Given the function `h(x)=sin^2(x)+cos(x)` in the interval `0<x<2pi`

We have to find the critical numbers of the function.

First take the derivative of the function and equate it to zero.

We get,

`h'(x)=2sin(x)cos(x)-sin(x)=0`

`sin(x)(2cos(x)-1)=0`

`sin(x)=0` or `2cos(x)-1=0`

sin(x)=0 implies x= npi

i.e we get x= pi in the interval 0<x<2pi

Now,

2cos(x)-1=0 implies cos(x)=1/2

So x= pi/3 and 5pi/3 (in the interval 0<x<2pi)

Hence the critical points are `x=pi/3, pi and (5pi)/3`

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.