The integral of -2x/(2x - 1)^3 is x^2/(2x - 1)^2, we have to find the integral of 4x-3/(2x-1)^3

4x-3/(2x-1)^3

=> 4x/(2x - 1)^3 - 3/(2x - 1)^3

=> -2*(-2x/(2x - 1)^3 - 3/(2x - 1)^3

`int (-2*-2x)/(2x - 1)^3 dx -int 3/(2x - 1)^3 dx`

=> `(-2*x^2)/(2x - 1)^2 - int 3/(2x - 1)^3 dx`

let 2x - 1 = t => dt = 2*dx => 3*dx = (3/2) dt

=> `(-2x^2)/(2x - 1)^2 - (3/2)*int 1/(t^3) dt`

=> `(-2x^2)/(2x - 1)^2 - (3/2)/(-2*t^2)`

substitute t = 2x - 1

=> `(-2x^2)/(2x - 1)^2 + 3/(4*(2x - 1)^2)`

**The required integral is** `((3/4) - 2x^2)/(2x - 1)^2 + C`

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now