Given that `n!>=2^(n-1)` Deduce that  `sum_(k=1)^n 1/(k!) <= 2-1/2^(n-1)` Hence show that e<=3, where e if the base of natural logarithms.

Asked on by roshan-rox

1 Answer | Add Yours

jeew-m's profile pic

jeew-m | College Teacher | (Level 1) Educator Emeritus

Posted on

`sum_(k=1)^n 1/(k!) <= sum_(k=1)^n 1/2^(k-1)`


Since n is positive;


` ` Get the summation at both sides.

`sum_(k=1)^n 1/(k!) <= sum_(k=1)^n 1/2^(k-1)`

`sum_(k=1)^n 1/2^(k-1) = 1+(1/2)+(1/2)^2+......+(1/2)^(k-1)`

`sum_(k=1)^n (1/2)^(k-1)` represent a sum of a geometric series.

`sum_(k=1)^n 1/2^(k-1) = (1-(1/2)^n)/(1-1/2) = 2-2/2^n`

`sum_(k=1)^n 1/(k!) <= sum_(k=1)^n 1/2^(k-1)`

`sum_(k=1)^n 1/(k!) <= 2-2/2^n`

`sum_(k=1)^n 1/(k!) <= 2-1/2^(n-1)`

So the answer is proved.

We know that;

`e=lim_(n->oo) sum_(k=0)^n 1/(k!) `

`e= lim_(n->oo) [1+sum_(k=1)^n 1/(k!)]`

`e=1+ lim_(n->oo) sum_(k=1)^n 1/(k!)`

We proved that;

`sum_(k=1)^n (1/k!) <= 2-1/2^(n-1)`

`lim_(n->oo) sum_(k=0)^n (1/k!)<=1+ lim_(n->oo) [2-1/(2^(n-1))]`



So the answer is proved.


We’ve answered 319,824 questions. We can answer yours, too.

Ask a question