given the function (theta sign) = 3 cos (theta sign - pie/6) +1  a) Calculate the average rate of change of the function from (theta) = pie/2 to 2(pie)/3   b) calculate the instantaneous rate of change at (theta) = 2(pie)/3

Expert Answers

An illustration of the letter 'A' in a speech bubbles

a) You need to remember the average rate of change formula such that:

`(dy)/(dx) = (f(2pi/3) - f(pi/2))/(2pi/3 - pi/2)`

You need to evaluate `f(2pi/3), ` hence you need to substitute `2pi/3`  for theta in `f(theta) = 3cos(theta - pi/6)+ 1`  such that:

`f(2pi/3) = 3cos(2pi/3 - pi/6)+ 1 =gt f(2pi/3) = 3cos(3pi/6) + 1`  (you need to bring the terms in brackets to a common denominator)

`f(2pi/3) = 3cos(pi/2) + 1 `

You need to substitute 0 for cos `pi/2 ` such that:

`f(2pi/3) =3*0 + 1 =gt f(2pi/3) = 1 `

You need to evaluate `f(pi/32), ` hence you need to substitute `pi/2`  for theta in `f(theta) = 3cos(theta - pi/6)+ 1`  such that:

`f(pi/2) = 3cos(pi/2 - pi/6)+ 1`

`f(pi/2) = 3cos(2pi/6)+ 1`

`f(pi/2) = 3cos(pi/3)+ 1`

`f(pi/2) = 3(1/2)+ 1 =gt f(pi/2) = 3/2+ 1 = 5/2`

You need to evaluate the average rate of change such that:

`(dy)/(dx) = (1 - 5/2)/(2pi/3 - pi/2)`

`(dy)/(dx) = (-3/2)/(4pi/6 - 3pi/6)`

`(dy)/(dx) = (-3/2)/(pi/6) =gt (dy)/(dx) =-18/(2pi)`

`(dy)/(dx) =-9/pi`

Hence, evaluating the average rate of change of function between `pi/2`  and `2pi/3`  yields `(dy)/(dx) =-9/pi` .

b) You need to evaluate the instantaneous rate of change at `theta = 2pi/3` , hence you need to evaluate`f'(2pi/3), ` but first you need to find `f'(theta)`  such that:

`f'(theta) = -3sin(theta - pi/6)*(theta - pi/6)'`

`f'(theta) = -3sin(theta - pi/6)`

You need to substitute `2pi/3`  for theta in `f'(theta)`  such that:

`f'(2pi/3) = -3sin(2pi/3 - pi/6)`

You need to bring the terms inside brackets to a common denominator such that:

`f'(2pi/3) = -3sin(4pi/6 - pi/6)`

`f'(2pi/3) = -3sin(3pi/6) =gt f'(2pi/3) = -3sin(pi/2)`

`f'(2pi/3) = -3 (sin pi/2 = 1)`

Hence, evaluating the instantaneous rate of change at `theta = 2pi/3`  yields `f'(2pi/3) = -3` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team