# Given f(x)=x^2*e^x, calculate f'(x)?

*print*Print*list*Cite

### 1 Answer

The function `f(x) = x^2*e^x`

`f'(x) = (x^2)'*(e^x) + *x^2)*(e^x)'`

= `2x*e^x + x^2*e^x`

= `x*e^x(2 + x)`

**The derivative `f'(x) = x*e^x(2 + x)` **

*print*Print*list*Cite

The function `f(x) = x^2*e^x`

`f'(x) = (x^2)'*(e^x) + *x^2)*(e^x)'`

= `2x*e^x + x^2*e^x`

= `x*e^x(2 + x)`

**The derivative `f'(x) = x*e^x(2 + x)` **