Give two positives & two negatives that are coterminal with each angle. Let n represent any integer. 90`` 180 0 270

2 Answers | Add Yours

baxthum8's profile pic

baxthum8 | High School Teacher | (Level 3) Associate Educator

Posted on

Coterminal angles share a terminal side, therefore continuously  adding or subtracting 360 degrees to each will find your answer, thus:

  90:  (+)  450, 810  (-) -270, -630

  180:  (+) 540, 900  (-) -180, -540

  0:  (+) 360, 720  (-) -360, -720

270:  (+) 630, 990  (-) -90, -450

llltkl's profile pic

llltkl | College Teacher | (Level 3) Valedictorian

Posted on

Two angles are said to be coterminal if their terminal sides are same. Coterminal angles A_c to angle A may be obtained by adding or subtracting n*360 degrees from A (where n is an integer).

`A_c = A +- n*360^o`

Thus, two positive and two negative coterminal angles of the given angles can be obtained as follows:

Angle       Positive coterminals        Negative coterminals

----------------       -------------------------------      ----------------------------------------------

`90^o`            (90+1*360)^o and (90+2*360)^o     (90-1*360)^o and (90-2*360)^o    

                     i.e. 450^o and 810^o                        i.e. -270^o and -630^o

`180^o`       (180+1*360)^o & (180+2*360)^o     (180-1*360)^o & (180-2*360)^o    

                     i.e. 540^o and 900^o                        i.e. -180^o and -540^o

`0^o`            (0+1*360)^o & (0+2*360)^o                 (0-1*360)^o & (0-2*360)^o    

                     i.e. 360^o and 720^o                        i.e. -360^o and -720^o

`270^o`        (270+1*360)^o & (270+2*360)^o  (270-1*360)^o & (270-2*360)^o    

                     i.e. 630^o and 990^o                        i.e. -90^o and -450^o

Sources:

We’ve answered 318,915 questions. We can answer yours, too.

Ask a question