Geometry: Line EquationParallelogram ABCD has peaks: A (3,5), B (5.4) and the center M (7.8). To find and write equations of the sides and diagonals of the parallelogram, how should I do?

3 Answers | Add Yours

sciencesolve's profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You may approach the problem in the following way, such that:

NP is a line that is parallel to BC and AD

N,P represent the midpoints of the lines AB and CD

You may find the midpoint N (on AB) such that:

`2x_N = x_A + x_B => 2x_N = 3 + 5 => 2x_N = 8 => x_N = 4`

`2y_N = y_A + y_B => 2y_N = 5 + 4 => 2y_N = 9 => y_N = 9/2`

You need to find the slope of the line MN, such that:

`m_(MN) = (y_M - y_N)/(x_M - x_N)`

`m_(MN) = (8 - 9/2)/(7 - 4) => m_(MN) = 7/6`

You need to remember that the slopes of two parallel lines are equal, hence, since the MN || AD yields:

`m_(MN) = m_(AD) = 7/6`

You may write the equation of the side AD, such that:

`y - y_A = m_(AD)(x - x_A) => y - 5 = 7/6(x - 3)`

`y = 5 + 7/6x - 7/2 => y = 7/6x + 3/2`

You may write the equation of the side BC, such that:

`y - y_B = m_(AD)(x - x_B) => y - 4 = 7/6(x - 5)`

`y = 7/6x - 35/6 + 4`

`y = 7/6x - 11/6`

You need to find the cordinates C and D, using the midpoint property, such that:

`x_C = 2x_M - x_A => x_C = 11 `

`y_C = 2y_M - y_A => y_C = 11`

`x_D = 2x_M - x_B => x_D = 9`

`y_D = 2y_M - y_B => y_D = 12`

You may write the equations of diagonals AC and BD, such that:

`y - y_A = (y_C - y_A)/(x_C - x_A)(x - x_A)`

`y - 5 = (11 - 5)/(11 - 3)(x - 3)`

`y - 5 = (3/4)(x - 3)`

`y - 4= (y_D - y_B)/(x_D - x_B)(x - 5)`

`y - 4= (12 - 4)/(9 - 5)(x - 5)`

`y - 4 = 2(x - 5) => y = 2x - 6`

Hence, evaluating the equations of the sides AD, BC and diagonals AC and BC yields: `y = 7/6x + 3/2 ; y = 7/6x - 11/6 ; y - 5 = (3/4)(x - 3) ; y = 2x - 6.`

giorgiana1976's profile pic

giorgiana1976 | College Teacher | (Level 3) Valedictorian

Posted on

The equation of the line AB, where A (3,5), B (5,4) :

(x-xA)/(xB-xA)=(y-yA)/(yB-yA)

(x-3)/(5-3)=(y-5)/(4-5)

(x-3)/(2)=(y-5)/(-1)

By cross multiplying:

(-1)(x-3)=2(y-5)

3-x=2y-10

2y=13-x

yAB=(13-x)/2

For finding the coordinates of the C point, we'll use the rule of the coordinates of the center pont M(7,8)

xM=(xA+xC)/2

7=(3+xC)/2, 14-3=xC, xC=11

yM=(yA+yC)/2

8=(5+yC)/2

16-5=yC

yC=11

For finding the coordinates of the D point, we'll use the rule of the coordinates of the center pont M(7,8)

xM=(xB+xD)/2

7=(5+xD)/2

14-5=xD

xD=9

yM=(yB+yD)/2

8=(4+yD)/2

yD=12

The equation of the line BC, where C (11,11), B (5,4) :

(x-xB)/(xC-xB)=(y-yB)/(yC-yB)

(x-5)/(6)=(y-4)/(7)

7(x-5)=6(y-4)

7X-35=6Y-24

7x-11=6y

yBC=(7x-11)/6

The same you will calculate for the lines AD and CD.

neela's profile pic

neela | High School Teacher | (Level 3) Valedictorian

Posted on

The diagonal of the parallelogram  are AC and BD.

Equation of AD: The diagonal line pass through  A (3,5) and the point D not given must pass through the centre M (7,8)

Therefore, the equation of the line is: (x-3)/(3-7)=(y-5)/(5-8) or (x-3)(-3)=(y-5)(-4)  or 3x-9=4y-20, which simplifies to 3x-4y+11=0.

The equation of the other diagonal BD:

BD passes through B (5,4) and M(7,8). So its equation is:

(x-5)/(5-7)=(y-4)/(4-8) or (x-5)(-4)=(y-4)(-3) or 4x-20=3y-12, which simplifies to 4x-3y-8=0

Since M is the mid point of AC and BD,the coordinates of C (x,y) could be found by equating the algebraic mid point of AC with that of M.

((3+x)/2 , (5+y)/2 ) = coordinates of M (7,8). We get C (11,11).Similarly try and find D by  treatind M is mid point of B and D. So, we find D(9,12).

The equation of AD is the line joining A(3,5) and  (9,12).

Which is  y-12= [12-5)/(9-3)]{(x-9)

y-12=(7/6)(x-9) or

7x-6y+9=0 is the equation of AD.

Equation of BC , which joins B (5,4) and C( 11,11) is

y-11 = ((11-4)/(11-5))(x-11) =(7/6)(x-11) or

7x-6y-11 = 0.

Similarly you can find equations for the nes AB and CD which are the other two parallel sides of the parallelogram ABCD.

 

 

 

We’ve answered 318,915 questions. We can answer yours, too.

Ask a question