A geometric series has three terms. The sum of the three terms is 42. The third term is 3.2 times the sum of other two. What are the terms?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`a_1+a_2+a_3=42`                                      (1)

`a_3=3.2(a_1+a_2)`                                    (2)

Now we put `3.2(a_1+a_2)` instead of `a_3` in first equation.

`a_1+a_2+3.2(a_1+a_2)=42`

`4.2a_1+4.2a_2=42`

Now we...

See
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Get 48 Hours Free Access

`a_1+a_2+a_3=42`                                      (1)

`a_3=3.2(a_1+a_2)`                                    (2) 

Now we put `3.2(a_1+a_2)` instead of `a_3` in first equation.

`a_1+a_2+3.2(a_1+a_2)=42`

`4.2a_1+4.2a_2=42`

Now we use the fact that this is geometric sequence which means that `a_n=a_1r^(n-1)` hence we have

`4.2a_1+4.2a_1r=42`

`a_1(4.2(1+r))=42`

`a_1=42/(4.2(1+r))=10/(1+r)`

Now from (2) we have

`a_1r^2=3.2(a_1+a_1r)` now we put `10/(1+r)` instead of `a_1`

`(10r^2)/(1+r)=32/(1+r)+(32r)/(1+r)`

`(10r^2-32r-32)/(1+r)=0` This is equal to 0 only if numerator is equal to 0.

`10r^2-32r-32=0`

When we solve this equation we get two solutions:

`r_1=-4/5` and  `r_2=4`

For `r_1` we have  `a_1=10/(1-4/5)=50`, `a_2=50 cdot(-4/5)=-40`, `a_3=-40cdot(-4/5)=32`

For `r_2` we have 

`a_1=10/(1+4)=2`, `a_2=2 cdot 4=8`, `a_3=8 cdot 4=32`

Approved by eNotes Editorial Team