Gabriel's Horn is famous for having an infinite surface area but a finite volume. Prove that the volume is finite.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We are asked to confirm that the volume of the figure known as Gabriel's Horn is finite.

We will use the fact that ` int_1^( oo) (dx)/x^p={[[1/(p-1),"if" p>1],["diverges", p<=1]] `

The solid is generated by revolving the unbounded region between the graph of `f(x)=1/x ` and the x-axis, about the x-axis for `x>=1 ` .

We use the disk method: each disk is a circle of radius f(x).

`V=pi int_1^(oo) (1/x)^2dx `

`V=pi int_1^(oo) (dx)/(x^2) `

Using the Lemma above we get:

`V=pi(1/(2-1))=pi ` which of course is finite.

Images:
This image has been Flagged as inappropriate Click to unflag
Image (1 of 1)
Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

Gabriel's Horn is made by revolving the function `f(x)=1/x` about the x-axis, with the domain `1lt= x` . The volume can be found by slicing the horn up into infinitesimal circles of radius `f(x)` . Then summing their areas from `1` to `oo` .

 

`V=int_1^oo pi r^2 dx=pi int_1^oo f(x)^2 dx `

`V=pi int_1^oo 1/x^2 dx=pi(-1/x)|_1^oo=pi [(lim_(x-gtoo)-1/x)+1/1]`

`V=pi(0+1)`

`V=pi`

As you can see the volume of the horn is exactly `pi` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Images:
This image has been Flagged as inappropriate Click to unflag
Image (1 of 2)
This image has been Flagged as inappropriate Click to unflag
Image (2 of 2)
Approved by eNotes Editorial Team