`g(x) = (2ra^(rx) + n)^p` Find the derivative of the function.

Expert Answers
gsenviro eNotes educator| Certified Educator

`g'(x) = d/dx (2ra^(rx)+n)^p`

`= p(2ra^(rx)+n)^(p-1) * d/dx (2ra^(rx)+n)`

`= p(2ra^(rx)+n)^(p-1) * 2r*ln a*a^(rx)*r`

`= 2pr^2 a^(rx)*ln(a)*(2ra^(rx)+n)^(p-1)`

Hope this helps.

balajia | Student

`g(x)=(2ra^(rx)+n)^p`

`g'(x)=p(2ra^(rx)+n)^(p-1).(2r).ra^(rx)loga`

`=2pr^2loga.a^(rx)(2ra^(rx)+n)^(p-1)`

Access hundreds of thousands of answers with a free trial.

Start Free Trial
Ask a Question