First, we will find the initial population, when t= 0

==> G(0)= 10,000/(1+24)= 10,000/25= 400

Now we need to find t such that G(t) < 400

10000/(1+24e^(-1.2t)) < 400

Use reciprocal and reverse the inequality:

==> (1+24e^(-1.2t))/10,000 > 1/400

Multiply by 10,000

==> 1+24e^(-1.2t) > 25

Subtract 1.

==> 24e^(-1.2t) > 24

==> e^(-1.2t) > 1

==> -1.2t > ln 1

==> -1.2t > 0

==> t < 0

t< 0 that means the population drcreases when t is a negative number. But time can not be negative.

Then, for all values where t>0 , the population increases.

**Then, we notice that the population does not decrease**

To find when a function decreases, find when the derivative is negative.

`G'(t) = ((10000)(-1))/(1+24e^(-1.2t))^2 (24)(-1.2)e^(-1.2t) = (288,000e^(-1.2t))/(1+24e^(-1.2t))`

This is always positive, so the function never decreases, G(t) gets closer and closer to 10,000 but never reaches it. You had trouble with finding the maximum because it's maximum is at t=oo. The minimum is at t=0 G(0) = 10,000/25 = 400.

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now