Given that f(x)=3x^2 - 2x + 5 and g(x) =3x - 1, how do you find g(4) - f(-2)?
- print Print
- list Cite
Expert Answers
Tushar Chandra
| Certified Educator
calendarEducator since 2010
write12,551 answers
starTop subjects are Math, Science, and Business
We are given that f(x) = 3x^2 - 2x + 5 and g(x) = 3x - 1.
We have to find g(4) - f(-2).
g(4) = 3*4 - 1 = 12 - 1= 11
f(-2) = 3*(-2)^(2) - 2*(-2) + 5 = 3*4 + 4 + 5 = 12 + 4 + 5 = 21
Therefore g(4) - f(-2) = 11 - 21 = -10
The required value of g(4) - f(-2) is -10.
Related Questions
- Given f(x) and g(x), please find (fog)(X) and (gof)(x) f(x) = 2x g(x) = x+3
- 1 Educator Answer
- given f(x)=2x-6 and g(x)=9x^2-7x-4. Find (f*g)(-6).
- 1 Educator Answer
- if f(x)=2x-3 and fg(x)=2x+1,find g(x)
- 1 Educator Answer
- Find the maximum or minimum value of f(x) = 2x^2 + 3x - 5
- 2 Educator Answers
- Given the function f(x)=2x-3, find the function g(x)=f(x+1)+f(x-1)?
- 1 Educator Answer
neela | Student
Given f(x) = 3x^2-2x+5 and g(x) = 3x-1.
To find g(4)- f(-2).
To get f(-2) we put x = -2 in f( x) = 3x^2-2x+5. Then f(-2) = 3(-2)^2-2(-2) +5 = 3*4+2*2+5 = 12+4+5 = 21.
To gget g(4) we put x = 4 in g(x) = 3x-1 . Then g(4) = 3*4-1 = 12-1 = 11.
Therefore g(4) = 11. f(-2) = 21.
So g(4) - f(-2) = 11-21 = -10.
Therefore g(4) - f(-2) = -10.
Student Answers