For the function f(x) = x^3, determine ((f(a+h) - f(a))/h

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The function f(x) = x^3.

To determine f(a+h) substitute x with a+h.

f(a+h) = (a+h)^3

= a^3 +3*a^2*h +3*a*h^2+ h^3

f(a) = a^3

`(f(a+h) - f(a))/h`

= `(a^3+3*a^2*h +3*a*h^2+ h^3 - a^3)/h`

= `(3*a^2*h +3*a*h^2+ h^3)/h`

= `3*a^2 +3*a*h+ h^2`

The simplified form of `(f(a+h) - f(a))/h` for `f(x) = x^3`...

Unlock
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial

The function f(x) = x^3.

To determine f(a+h) substitute x with a+h.

f(a+h) = (a+h)^3

= a^3 +3*a^2*h +3*a*h^2+ h^3

f(a) = a^3

`(f(a+h) - f(a))/h`

= `(a^3+3*a^2*h +3*a*h^2+ h^3 - a^3)/h`

= `(3*a^2*h +3*a*h^2+ h^3)/h`

= `3*a^2 +3*a*h+ h^2`

The simplified form of `(f(a+h) - f(a))/h` for `f(x) = x^3` is `3*a^2 +3*a*h+ h^2`

Which equals `3a^2`  since` ` h = 0.

Approved by eNotes Editorial Team