A function f(x) = e^x*sin 2x. What is f''(x) - f'(x) + f(x)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The function `f(x) = e^x*sin (2x)` .

The first derivative of f(x) can be determined using the product rule.

`f'(x) = (e^x)'*sin (2x) + e^x*(sin (2x))'`

= `e^x*sin (2x) + e^x*2*cos(2x)`

`f''(x) = e^x*sin (2x) + e^x*2*cos(2x) + e^x*2*cos(2x) - 2*2*e^x*sin(2x)`

= `4*e^x*cos(2x) - 3*e^x*sin(2x)`

The sum `f''(x) - f'(x) + f(x)`

= `4*e^x*cos(2x) - 3*e^x*sin(2x) - e^x*sin (2x) - e^x*2*cos(2x) + e^x*sin (2x)`

= `2*e^x*cos(2x) - 3*e^x*sin(2x)`

For the function `f(x) = e^x*sin (2x)` , `f''(x) - f'(x) + f(x) = 2*e^x*cos(2x) - 3*e^x*sin(2x)`

f''(x) - f'(x) + f(x)
Approved by eNotes Editorial Team

Posted on

Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial