It is given that u^2 = v^2 + (m/n)((u-v)^2) and we have to prove that : v/u = (m-n)/(m+n)

u^2 = v^2 + (m/n)((u-v)^2)

=> u^2 - v^2 = (m/n)((u-v)^2)

=> (u^2 - v^2)/ (u-v)^2 = (m/n)

=> (u - v) ( u + v) / ( u - v)^2 = (m/n)

=> (u + v) / (u - v) = m/n

=> (u + v) / (u - v) + 1 = (m/n) + 1

=> (u + v + u - v) / (u - v) = (m + n) / n

=> 2u / ( u- v) = (m + n) / n

=> (u - v) / 2u = n/ ( m+ n)

=> (u - v) / u = 2n/ (m + n)

=> u / u - v / u = 2n / ( m + n)

=> 1 - v / u = 2n / ( m + n)

=> v / u = 1 - 2n / ( m + n)

=> v / u = (m + n - 2n ) / ( m+n)

=> v/ u = (m - n) / ( m + n)

**We prove that v/u = (m - n)/( m + n) if u^2 = v^2 + (m/n)((u-v)^2)**

Posted on

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now