Find y' and y" if y = ln(sec 2x + tan 2x)

1 Answer | Add Yours

justaguide's profile pic

justaguide | College Teacher | (Level 2) Distinguished Educator

Posted on

The function `y= ln(sec 2x + tan 2x)`

This can be differentiated using the chain rule.

y' = `(1/(sec 2x + tan 2x))*(2*sec 2x*tan 2x + 2*sec^2 2x)`

=>  `(2*sec 2x*tan 2x + 2*sec^2 2x)/(sec 2x + tan 2x)`

=> `2*sec 2x(tan 2x + sec 2x)/(sec 2x + tan 2x)`

=> `2*sec 2x`

y'' = `2*2*sec 2x*tan 2x`

=> `4*sec 2x*tan 2x`

The derivatives of `y= ln(sec 2x + tan 2x)` are `y' = 2*sec 2x ` and `y''= 4*sec 2x*tan 2x`

We’ve answered 319,817 questions. We can answer yours, too.

Ask a question