`sin theta = 5/13 `
`cos theta = -12/13 `
`==gt cos theta = (sin theta)/(cos theta) = (5/13)/(-12/13) = -5/12 `
`==gt sec theta = 1/(cos theta) = 1/(-12/13)= -13/12 `
`==gt csc theta = 1/(sin theta)= 1/(5/13)= 13/5 `
`==gt cot theta = (cos theta)/(sin theta)= (-12/13)/(5/13)= -12/5`
b) `cos theta = -3/5`
`tan theta lt 0`
`==gt sec theta = 1/(costheta)= 1/(-3/5) = -5/3`
Given that `tan theta lt 0 `
`==gt (sintheta)/(costheta) lt 0 `
`==gt (sin theta)/ (-3/5) lt 0 `
`==gt sin theta gt 0`
==> We know that:
`sin^2 theta + cos^2 theta = 1`
` ==gt sin^2 theta = 1- cos^2 theta = 1 - (9/25)= 16/25 `
`==gt sin theta = +- 4/5`
But `sintheta gt 0 `
`==gt sin theta = 4/5 `
`==gt tan theta = (sintheta)/(cos theta) = (4/5)/(-3/5)= -4/3 `
`==gt cot theta = -3/4 `
`==gt csc theta = 1/(sintheta)= 1/(4/5)= 5/4`
``
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.