Find the value of f(0) when f'(t) = 4 cos(2t), f(pi/4)=4

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to find `f(t)`  using the integration such that:

`f(t) = int f'(t)dt => f(t) = int 4 cos(2t) dt`

`f(t)= 4 int cos (2t) dt => f(t) = 4*(sin(2t))/2 + c`

`f(t) = 2sin(2t) + c`

Since the problem provides the information that `f(pi/4)=4` , you may find the constant c such that:

`f(pi/4) = 2sin(2pi/4) + c => 4 = 2sin(pi/2) + c`

Substituting 1 for `sin(pi/2)`  yields:

`4 = 2 + c => c = 4-2 => c = 2`

Hence, evaluating the function f(t) yields:

`f(t) = 2sin(2t) + 2`

You need to evaluate f(0), hence, you need to substitute 0 for t in equation of the function such that:

`f(0) = 2sin(0) + 2 => f(0) = 2*0 + 2 => f(0) = 2`

Hence, evaluating the value of the function `f(t)`  at `t=0`  yields `f(0) = 2` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team