Find the unique solution of the second-order initial value problem: y'' + 6y = 0, y(0) = 2 y'(0) = -2

1 Answer

tiburtius's profile pic

tiburtius | High School Teacher | (Level 2) Educator

Posted on

First we solve differential equation `y''+6y=0`

This is equivalent to solving algebraic equation `z^2+6=0`


`z_(1,2)=pm sqrt6 i`

Now our solutions are `y_1=e^(z_1x)`  and `y_2=e^(z_2x)`

And solution of our equation is `y=C_1y_1+C_2y_2`  

where `C_1` and `C_2`   are complex constants.

Solution to our equation is `y=C_1e^(-isqrt6x)+C_2e^(isqrt6x)`

And since `e^(ia)=cos a+isina`  we have

`y=C_1(cos (-sqrt6x)+isin(-sqrt6x))6+C_2(cos sqrt6x+isin sqrt6x)`


Now we put new constants `A=C_1+C_2`  and `B=(C_2-C_1)i`  so we have


Now in order to calculate `A` and `B` we use initial values. First we find derivation `y'=-Asqrt6sinsqrt6x+Bsqrt6cossqrt6x`



From first equation we have `A=2.`

From second equation we have `Bsqrt6=-2=>B=-2/sqrt6`

Hence the final solution to our initial value problem is `y=2cos(sqrt6x)-2/sqrt6sin(sqrt6x)`