The difference of the two integers is 12. Let one of them be A, the other is 12 + A.

We have to minimize A*(12 + A)

The value of A for which P = A^2 + 12A is the minimum can be found by solving P' = 0 for A and ensuring that P''(A) is positive.

P' = 2A + 12

2A + 12 = 0

=> A = -6

P'' = 2

At A = -6, P'' is positive, this indicates the minimum value is at A = -6

The integers are A = -6 and A + 12 = 6

**The required integers are -6 and 6**