trigonometry math

Start Free Trial

Find solutions of the trigonometric equation sin 12x+cos 6x=0?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We need the solutions of sin 12x + cos 6x = 0.

sin 12x + cos 6x = 0

=> 2*sin 6x*cos 6x + cos 6x = 0

let cos 6x = y

=> 2*sqrt(1 - y^2)*y + y = 0

=> y(2*sqrt(1 - y^2) + 1) = 0

=>...

See
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Get 48 Hours Free Access

We need the solutions of sin 12x + cos 6x = 0.

sin 12x + cos 6x = 0

=> 2*sin 6x*cos 6x + cos 6x = 0

let cos 6x = y

=> 2*sqrt(1 - y^2)*y + y = 0

=> y(2*sqrt(1 - y^2) + 1) = 0

=> y = 0

2*sqrt(1 - y^2) + 1 = 0

=> 4*(1 - y^2) = 1

=> 1 - y^2 = 1/4

=> y^2 = 3/4

=> y = sqrt 3/2

cos 6x = 0 and cos 6x = sqrt 3/2

6x = arc cos 0 and x = (1/6)*arc cos (sqrt 3/2)

x = pi/12 + n*pi/3 and x = pi/36 + n*pi/3

The solution of the equation is x = pi/12 + n*pi/3 and x = pi/36 + n*pi/6, where n is a positive or negative integer.

Approved by eNotes Editorial Team