To evaluate a definite integral, we need to use the Fundamental Theorem of Calculus. The formula is:

`int_a^b f(x) dx = F(x) | _a^b = F(b) - F(a)`

where F(x) is the anti-derivative of f(x).

So, determine the the antiderivative of `-e^x` . Apply the indefinite integral formula `int e^u du = e^u + C` .

`int -e^x dx= - int e^x dx = -e^x + C`

Hence, the antiderivative of `-e^x` is `-e^x` ` ` . Then, substitute this to the formula of Fundamental Theorem of Calculus to evaluate the given definite integral.

`int_(-1)^1 -e^x = -e^x | _(-1)^1 = -e^1 - (-e^(-1) )`

`= -e + e^(-1) = e^(-1) - e = 1/e - e`

**Thus, `int_(-1)^1 -e^x = 1/e - e` .**

Posted on

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now