We need to determine the quadratic equation whose roots are 3 and 5.
There are two ways to find the equation.
We will use the factors method to determine the function.
We find the factors of the quadratic function.
Let f(x) be the function where 3 and 5 are the roots.
==> Then, the factors are (x-3) and (x-5)
==> f(x) = (x-3)(x-5)
We will open the brackets.
==> f(x) = x^2 -3x -5x + 15
==> f(x) = x^2 - 8x + 15
The roots of the quadratic equation are x= 3 and x = 5
So we can write: (x - 3)(x - 5) = 0
=> x^2 - 3x - 5x + 15 = 0
=> x^2 - 8x + 15 = 0
The required quadratic equation is x^2 - 8x + 15 = 0
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.