Find the pH of 0.1M H3PO4 solution.

Expert Answers info

Rylan Hills eNotes educator | Certified Educator

calendarEducator since 2010

write12,544 answers

starTop subjects are Math, Science, and Business

The pH of a solution is a measure of the molar concentration of hydrogen `(H^+)` , or hydronium `(H_3O^+)` ions of the solution. If a solution has a hydronium ion concentration of `[H^+]` , the pH of the solution is equal to `-1*log_10[H^+]` .

The pH of pure water at STP is equal to 7. Acids have a pH less 7.

When phosphoric acid `H_3PO_4` is diluted with water it dissociates as follows:

1) `H_3PO_4 -> H^+ + H_2PO_4^-`

2) `H_2PO_4^(-) -> H^+ + HPO_4^(2-)`

3) `HPO_4^(2-) -> H^+ + PO_4^(3-)`

The acid dissociation constants of (1), (2), and (3) are equal to 7.1*10^-3, 6.3*10^-8 and 4.5*10^-13 resp.

To determine the pH of a 0.1 M solution of phosphoric acid, the concentration of H^+ in the solution has to be determined. The first deprotonation step leads to the formation of 0.1 M of hydrogen ions.

The second and third deprotonation steps can be ignored for acid concentrations greater 0.001 M as the [H^+] due to these is negligible.

Now Ka1 =...

(The entire section contains 3 answers and 501 words.)

Unlock This Answer Now


check Approved by eNotes Editorial

bandmanjoe eNotes educator | Certified Educator

calendarEducator since 2011

write1,351 answers

starTop subjects are Science, Literature, and Social Sciences

the-tutor-master eNotes educator | Certified Educator

briefcaseCollege Lecturer, Professional Researcher


calendarEducator since 2012

write164 answers

starTop subjects are Science, Social Sciences, and Law and Politics

check Approved by eNotes Editorial

Ask a Question