Find the missing term of the geometric sequence. 4, ____ , 5.76...

Expert Answers

An illustration of the letter 'A' in a speech bubbles

A geometric sequence is a sequence that takes the following form:

`a_n = a*r^(n-1)`

Here, `a` is the initial term, `r` is a ratio term that relates each term to the next, and n is the number term. Notice that `n >=1`, though some may define the same series with `n>=0`.

Therefore, each of the terms above can be related to the above sequence:

`4 = ar^0` 

`? = ar^1`

`5.76 = ar^2`

Using the first term, we can clearly see that `a = 4`. We can then use the third term to find the ratio:

`5.76 = 4r^2`

Divide both sides by 4:

`1.44 = r^2`

Now, subtract 1.44 from both sides. We could take the square root, but that won't give us the full picture!

`0 = r^2-1.44`

Finally, factor:` `

`0 = (r-1.2)(r+1.2)`

Solving this, we see two possible values for `r`:

`r = +-1.2`

Therefore, we have two possible values for the second term:

`a_2 = ar = +-4*1.2 = +-4.8`

There is your final answer! Again, we cannot say based on the given information whether the term is positive or negative, so we are left with two answers.

Approved by eNotes Editorial Team
Soaring plane image

We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

  • 30,000+ book summaries
  • 20% study tools discount
  • Ad-free content
  • PDF downloads
  • 300,000+ answers
  • 5-star customer support
Start your 48-Hour Free Trial