Find the maximum or minimum value of f(x) = -3x^2 + 9x

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We find the extreme points of f(x) by finding its derivative and equating that to zero. This is then solved to determine the zeros.

f(x) = -3x^2 + 9x

f'(x) = -6x + 9

-6x  + 9 = 0

=> -6x = -9

=> x = 9/6

=> x =...

See
This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Get 48 Hours Free Access

We find the extreme points of f(x) by finding its derivative and equating that to zero. This is then solved to determine the zeros.

f(x) = -3x^2 + 9x

f'(x) = -6x + 9

-6x  + 9 = 0

=> -6x = -9

=> x = 9/6

=> x = 3/2

At x = 0, f(x) = -3*(3/2)^2 + 9*(3/2)

=> -3( 9/4) + 27 / 2

=> -27 / 4 + 27/2

=> 27/4

f''(x) = -6 which is negative for x = 3/2.

Therefore the maximum value of f(x) = -3x^2 + 9x = 27/4

Approved by eNotes Editorial Team
An illustration of the letter 'A' in a speech bubbles

Given the curve f(x) = -3x^2 + 9x.

We need to find the extreme value of the function.

First we notice that the coefficient of x^2 is negative, then the curve will have a maximum point.

Now we will find the first derivative.

=> f'(x) = -6x + 9

Now we will determine the critical value which is the derivatives zero.

==>< -6x + 9 = 0

==> x = -9/-6 = 9/6 = 3/2

==> x = 3/2

Now we will calculate f(3/2)

==> f(3/2) = -3(3/2)^2 + 9(3/2) = -27/4 + 27/2 = 27/4

Then the function f(x) has a maximum value at the point (3/2, 27/4)

Approved by eNotes Editorial Team