Find the limit using limit principles for infinite limits as x goes to infinity for (2x^2 +1)/(9x^4 + 2)^-1/2

Expert Answers

An illustration of the letter 'A' in a speech bubbles

I think you have made mistake typing, this should be (2x^2+1)/(9x^4+2)^(1/2), not minus -1/2. Assuming that I will do the sum.

`lim_(x-gtoo)(2x^2+1)/sqrt(9x^4+2)`

Now if you try to evaluate the limit straight away, you would get the answer as `oo/oo` , which is indeterminate. We can remove this by dividing both numerator and denominator by `x^2.`

`lim_(x-gtoo)((2x^2+1)/(x^2))/(sqrt(9x^4+2)/x^2)`

`lim_(x-gtoo)(2+1/x^2)/(sqrt((9x^4+2)/x^4))`

`lim_(x-gtoo)(2+1/x^2)/sqrt(9+2/x^4)`

 

Now we can evaluate the limit.

`lim_(x-gtoo)(2+1/x^2)/sqrt(9+2/x^4) = (2+0)/sqrt(9+0)`

`lim_(x-gtoo)(2+1/x^2)/sqrt(9+2/x^4) =2/sqrt(9)`

`lim_(x-gtoo)(2+1/x^2)/sqrt(9+2/x^4) = 2/3`

 

Therefore,

`lim_(x-gtoo)(2x^2+1)/sqrt(9x^4+2) = 2/3`

 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team