Find the limit: limx^sinx as x approaches to 0+.

1 Answer

beckden's profile pic

beckden | High School Teacher | (Level 1) Educator

Posted on

`lim_(x->0^+) x^sinx` this is a `0^0` type limit,

we take the use the fact that `lim_(x->0^+)f(x)=e^(ln(lim_(x->0^+)f(x)))`

and `ln(lim_(x->0^+)f(x))=lim_(x->0^+)ln(f(x))` to get


sinx*lnx is a 0*oo type limit

`lim_(x->0^+)sinx*lnx=lim_(x->0^+)lnx/cscx` Now we can use L'Hopital's rule

to get


Now `1/x*1/(-cscx*cotx)=-(sinx*sinx)/(xcosx)`

finally `lim_(x->0)sin^2x/(xcosx) = lim_(x->0)sinx/x * lim_(x->0)(sinx/cosx)=1*0=0`

` ``lim_(x->0^+)x^sinx=``e^(lim_(x->0^+)sinx*lnx)=e^0=1`