Math Questions and Answers

Start Your Free Trial

Find the limit: `lim_(x->0) (sin (sqrt (2x))/(sqrt (2x)))`

Expert Answers info

Tushar Chandra eNotes educator | Certified Educator

calendarEducator since 2010

write12,554 answers

starTop subjects are Math, Science, and Business

Let's use simple symbols to make things easier. You want the value of :

`lim_(x->0) (sin (sqrt (2x))/(sqrt (2x)))` .

Now if you substitute the value of x = 0 in the expression we are finding the limit of, you get (sin 0)/0 = 0/0, which is indeterminate.

In these cases, an easy way to find the limit is by using l'Hopital's rule, which allows us to substitute the numerator and denominator with the derivative.

The derivative of `sin(sqrt(2x))` isĀ `2cos(sqrt 2x)*(1/2)/sqrt(2x)` = `cos(sqrt(2x))/sqrt(2x)`

Similarly the derivative of `sqrt(2x)` is `2(1/2)/sqrt(2x)` = `1/sqrt(2x)`

This gives the limit as : `lim_(x->0)((cos sqrt(2x)/sqrt(2x))/(1/sqrt(2x)))` = `lim_(x->0) cos sqrt(2x)`

Now if you substitute x = 0, you get cos 0 which is equal to 1.

The required value of `lim_(x->0) (sin (sqrt (2x))/(sqrt (2x)))` = 1.

check Approved by eNotes Editorial