Find the length of the arc formed by `y = 1/8(-2x^2 + 4 ln(x))` from x = 3 to x = 8.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`y = 1/8(-2x^2 + 4 lnx)`

To determine the length of the arc from x=3 to x=8, apply the formula of arc length (S) which is:

`S = int_a^b sqrt(1+ ((dy)/(dx))^2) dx`

So, take the derivative of y.

`(dy)/(dx) = 1/8(-4x + 4/x) = 1/8 * (-4)(x -1/x) = -1/2 (x - 1/x)= -1/2 ((x^2 - 1)/x)= - (x^2 - 1)/(2x)`

Then, take the square of `(dy)/(dx)` .

`((dy)/(dx))^2 = (-(x^2-1)/(2x))^2 = (x^2-1)/(2x) * (x^2-1)/(2x) = (x^4-2x^2 +1)/(4x^2)`

Then, add 1 to `((dy)/(dx))^2` .

`1 + ((dy)/(dx))^2=1+(x^4 - 2x^2+1)/(4x^2) = (4x^2 +x^4-2x^2 + 1)/(4x^2) =(x^4 + 2x^2 + 1)/(4x^2) `

                `= (x^2+1)^2/(4x^2)`

And, take the square root of `1 + ((dy)/(dx))^2` .

`sqrt(1 + ((dy)/(dx))^2) = sqrt((x^2+1)^2/(4x^2)) = (x^2 +1)/(2x) = x^2/(2x) + 1/(2x)= x/2 + 1/(2x)`

Substitute this to the integral above to determine the arc length.

`S= int_a^b sqrt(1 + ((dy)/(dx))^2) dx= int_3^8 (x/2 + 1/(2x))dx = 1/2 int_3^8 (x + 1/x)dx`

`S= 1/2(x^2/2 + lnx) `  `|_3^8`  `= (1/4x^2+1/2lnx )`  `|_3^8`

`S = (1/4*8^2 + 1/2 ln 8) - (1/4*3^2 - 1/2 ln3) `

`S= 64/4+1/2 ln8 - 9/4 - 1/2ln3 = 55/4 + 1/2ln8 - 1/2 ln3 = 14.24`

Hence, the length of the arc is 14.24 units.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team