Find the inverse of the function f(x) = e^(3x - 5).

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have the function f(x) = e^(3x - 5).

Let y = e^(3x - 5).

=> y = e^3x / e^5

Multiply both sides by e^5

=> y*e^5 = e^3x

take the log to the base e of both the sides

=> ln ( y*e^5) = 3x

=> x = (ln y + ln e^5)/3

=> x = (ln y + 5)/3

Interchange y and x

=> y = (ln x + 5)/3

Therefore the inverse of f(x) =...

(The entire section contains 2 answers and 204 words.)

Unlock This Answer Now

Start your 48-hour free trial to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Start your 48-Hour Free Trial
Approved by eNotes Editorial Team

Posted on

An illustration of the letter 'A' in a speech bubbles
Approved by eNotes Editorial Team

Posted on