The integral `int sec^4 x*tan^5 x dx` has to be determined

`int sec^4 x*tan^5 x dx`

=> `int (1/(cos^4x))*(sin^5x)/(cos^5x) dx`

=> `int (sin^5x)/(cos^9x) dx`

=> `int sin x*((1 - cos^2x)^2)/(cos^9x) dx`

let `cos x = y => dy = -sin x dx`

=> `-int ((1 - y^2)^2)/y^9 dy`

=> `-int...

## Check Out

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

The integral `int sec^4 x*tan^5 x dx` has to be determined

`int sec^4 x*tan^5 x dx`

=> `int (1/(cos^4x))*(sin^5x)/(cos^5x) dx`

=> `int (sin^5x)/(cos^9x) dx`

=> `int sin x*((1 - cos^2x)^2)/(cos^9x) dx`

let `cos x = y => dy = -sin x dx`

=> `-int ((1 - y^2)^2)/y^9 dy`

=> `-int (1 + y^4 - 2y^2)/y^9 dy`

=> `-int 1/y^9 +1/y^5 - 2/y^7 dy`

=> `y^-8/8 + y^-4/4 - y^-6/3`

substitute y = cos x

=> `1/(8*cos^8x) + 1/(4*cos^4x) - 1/(3*cos^6x) + C`

**The integral `int sec^4 x*tan^5 x dx = 1/(8*cos^8x) + 1/(4*cos^4x) - 1/(3*cos^6x) + C` **