# Find the integral integrate of ((cos(x))^2)/(1+ sin(x))dx

*print*Print*list*Cite

### 1 Answer

You should use the fundamental formula of trigonometry such that:

`cos^2 x = 1 - sin^2 x`

You may convert the difference of squares into a product such that:

`1 - sin^2 x = (1 - sin x)(1 + sin x)`

You need to substitute `(1 - sin x)(1 + sin x)` for `cos^2 x` such that:

`(cos^2 x)/(1 + sin x) = ((1 - sin x)(1 + sin x))/(1 + sin x)`

Reducing by `1 + sin x` yields:

`(cos^2 x)/(1 + sin x) = 1 - sin x`

Integrating both sides yields:

`int (cos^2 x)/(1 + sin x) dx= int (1 - sin x) dx`

Using the linearity yields:

`int (cos^2 x)/(1 + sin x) dx = intdx - int sin x dx`

`int (cos^2 x)/(1 + sin x) dx = x - (-cos x) + c`

`int (cos^2 x)/(1 + sin x) dx = x + cos x + c`

**Hence, evaluating the given integral under the given conditions yields `int (cos^2 x)/(1 + sin x) dx = x + cos x + c.` **