It is a bit more complicated than that. It needs to be broken into 4 fractions this way:

First you find all real roots: `x_(1,2)=0,` `x_3=5^(1/3).` There are also 2 complex solutions of equation `x^2+5^(1/3)+5^(2/3)`. Now you can write

`1/(x^5-5x^2)=1/(x^2(x-5^(1/3))( x^2+5^(1/3)+5^(2/3) ))=`

`A/x + B/x^2 + C/(x-5^(1/3)) + (Dx + E)/( x^2+5^(1/3)+5^(2/3))`

To clearify you have `A` and `B` because 0 is double root `C` is for the third root and `Dx + E` are for 2 complex roots. If you add all the fractions you get the following equation.

`Ax(x-5^(1/3) ( x^2+5^(1/3)+5^(2/3) )) `

`+ B(x-5^(1/3) ( x^2+5^(1/3)+5^(2/3)))`

`+ Cx^2 ( x^2+5^(1/3)+5^(2/3) )`

`+ (Dx+E)x^2(x-5^(1/3)) = 1`

Now for `x=0` you get `B=-1/5`, for `x=5^(1/3)` you get

`C=1/(3 cdot 5^(4/3))` etc.

I hope this helps. For futher explanation consult literature for *integrating rational functions* (Bronstein, Demidovic, Apsen, ...).

You can also check links below. First link is to very usefull book about integration techniques (of course you don't have to buy the book, you e.g. can go to libary) and second link is for integrating rational functions.

## We’ll help your grades soar

Start your 48-hour free trial and unlock all the summaries, Q&A, and analyses you need to get better grades now.

- 30,000+ book summaries
- 20% study tools discount
- Ad-free content
- PDF downloads
- 300,000+ answers
- 5-star customer support

Already a member? Log in here.

Are you a teacher? Sign up now