Find the following limit: `lim_(x->oo) sqrt(4x^2 + 5x) - 2x`
- print Print
- list Cite
Expert Answers
calendarEducator since 2010
write12,554 answers
starTop subjects are Math, Science, and Business
We have to find the limit `lim_(x->oo)sqrt(4x^2 + 5x) - 2x`
substituting `x = oo` gives the form `oo - oo` which is indeterminate but we cannot use l'Hopital's rule as it is not of the form `0/0 or oo/oo`
`lim_(x->oo)sqrt(4x^2 + 5x) - 2x`
`sqrt(4x^2 + 5x) - 2x` = `(sqrt(4x^2+5x)-2x*sqrt(4x^2-5x)+2x)/(sqrt(4x^2 + 5x) + 2x)`
=> `((sqrt (4x^2 + 5x))^2 - (2x)^2)/(sqrt(4x^2 + 5x) + 2x)`
=> `(4x^2 + 5x - 4x^2)/(sqrt(4x^2 + 5x) + 2x)`
=> `(5x)/(sqrt(4x^2 + 5x) + 2x)`
let y = 1/x. As x tends to infinity, y tends to 0.
This changes the limit to
=> `lim_(y->0)(5/y)/(sqrt(4/y^2 + 5/y) + 2/y)`
=> `lim_(y->0)(5)/(sqrt(4+5y)+2)`
substitute y = 0
=> `5/(sqrt(4 + 0) + 2)`
=> 5/4
The required limit is 5/4
Related Questions
- Evaluate: `lim_(x->-oo)sqrt(4x^2 + 5x) - 2x`
- 1 Educator Answer
- Evaluate: `lim_(x-> oo+)sqrt(4x^2 + 5x) - 2x`
- 1 Educator Answer
- Find limits: 1.) lim x-->2 (8-x^3)/(x^2-5x+6) 2.) lim x-->-1 (x^2-5x+6)/(x^2-3x+2) 3.) lim...
- 2 Educator Answers
- Evaluate: `lim_(x->oo)(2x-2)/(5x^3+4)` and `lim_(x->-oo)(2x-2)/(5x^3+4)`
- 2 Educator Answers
- `lim_(x -> oo) (5x^2 + 2)/(sqrt(x^2 + 3))` Find the limit.
- 1 Educator Answer
calendarEducator since 2011
write5,348 answers
starTop subjects are Math, Science, and Business
You must replace x by infinte and the limit yields oo-oo, which is impossible, therefore you must multiply and divide by the conjugate:
lim [sqrt(4x^2+5x)-2x][sqrt(4x^2+5x)+2x]/[sqrt(4x^2+5x)+2x]
Use the difference of two squares
(a-b)(a+b)=a^2-b^2
[sqrt(4x^2+5x)-2x][sqrt(4x^2+5x)+2x]=4x^2+5x-(2x)^2
[sqrt(4x^2+5x)-2x][sqrt(4x^2+5x)+2x]=4x^2+5x-4x^2
[sqrt(4x^2+5x)-2x][sqrt(4x^2+5x)+2x]=5x
lim [sqrt(4x^2+5x)-2x][sqrt(4x^2+5x)+2x]/[sqrt(4x^2+5x)+2x]=limit 5x/[sqrt(4x^2+5x)+2x]
Force the factor x^2 under the square root
limit 5x/{sqrt [x^2(4+5x/x^2)]+2x}=limit 5x/x{sqrt [(4+5x/x^2)]+2}
Reduce x:
limit 5/{sqrt [(4+5/x)]+2} =limit 5/[sqrt(4+5/infinite)+2]
5/infinite=0
limit 5/[sqrt(4+0)+2] = 5/[(sqrt4)+2]=5/4
ANSWER: When x tends to infinite, the limit of the function is 5/4.