Find the first three terms of the Maclaurin series for `(x)/sqrt(1-x^(2))`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Since the problem dos not provide the information where the Maclaurin's series is centered, you may consider that it is centered at x = 0, hence, evaluating the first three terms of Maclaurin's series yields:

`x/(sqrt(1 - x^2)) ~~ f(0) + (x - 0)*f'(0)/(1!) + (x - 0)^2*f''(0)/(2!) + ...`

You need to evaluate `f(0), f'(0), f''(0),` such that:

`f(0) = 0/(sqrt(1 - 0^2)) => f(0) = 0`

You need to evaluate f'(x) using quotient rule and chain rule, such that:

`f'(x) = (x'(sqrt(1 - x^2)) - x(sqrt(1 - x^2))')/(1 - x^2) `

`f'(x) = (sqrt(1 - x^2) + (2x^2)/(2sqrt(1 - x^2)))/(1 - x^2)`

`f'(x) = (sqrt(1 - x^2) + (x^2)/(sqrt(1 - x^2)))/(1 - x^2)`

`f'(x) = (1 - x^2 + x^2)/(sqrt(1 - x^2)^3)`

Reducing duplicate terms yields:

`f'(x) = 1 /(sqrt(1 - x^2)^3) => f'(0) = 1`

`f''(x) = -((3/2)(1 - x^2)^(3/2 - 1)(-2x))/((1 - x^2)^3)`

`f''(x) = ((3x)sqrt(1 - x^2))/((1 - x^2)^3) => f''(0) = 0`

`x/(sqrt(1 - x^2)) ~~ 0 + (x)*1 + 0 + ...`

Hence, evaluating the first three terms of Maclaurin's series yields `x/(sqrt(1 - x^2)) ~~ 0 + x + 0 +` ...

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial Team