Given `4sinxcosx=1` on `[0,2pi]`

(1) Since `sin2x=2sinxcosx` we can rewrite as `2sin2x=1`

Then `sin2x=1/2`

(2) The period for `sin2x` is `pi` , so we find solutions to `sin^(-1)(1/2)` on `[0,4pi]` , so `2x=pi/6,(5pi)/6,(13pi)/6,(17pi)/6` or `x=pi/12,(5pi)/12,(13pi)/12,(17pi)/12`

**So the solution is**`x=pi/12,(5pi)/12,(13pi)/12,(17pi)/12`

The graphs of 4sinxcosx and y=1:

## Unlock

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

Given `4sinxcosx=1` on `[0,2pi]`

(1) Since `sin2x=2sinxcosx` we can rewrite as `2sin2x=1`

Then `sin2x=1/2`

(2) The period for `sin2x` is `pi` , so we find solutions to `sin^(-1)(1/2)` on `[0,4pi]` , so `2x=pi/6,(5pi)/6,(13pi)/6,(17pi)/6` or `x=pi/12,(5pi)/12,(13pi)/12,(17pi)/12`

**So the solution is** `x=pi/12,(5pi)/12,(13pi)/12,(17pi)/12`

The graphs of 4sinxcosx and y=1:

Given the trigonometric equation:

`4sinxcosx = 1`

`` We will rewrite :

`2*2sinxcosx = 1`

But we know that `sin2x = 2sinxcosx`

`==gt 2sin2x = 1`

Now we will divide by 2.

`==gt sin2x = 1/2 `

`==gt 2x = pi/6 , (5pi)/6` ( sin is positive in 1st and 2nd quadrants)

Now we will divide by 2.

`==gt x = pi/12 , (5pi)/12`

``