The equation of the tangent to the circle x^2 + y^2 = 25 at (3, 4) has to be determined without using calculus.
In a circle, the radius is perpendicular to the tangent at any point. Here, the equation of the circle is x^2 + y^2 = 25. The general form of the equation of a circle is (x - a)^2 + (y - b)^2 = r^2, where the center is (a, b) and the radius is r. The center of the given circle is (0,0).
The equation of the line from (0,0) to (3, 4) is y/x = 4/3.
As the tangent is perpendicular to the radius, it has a slope of -3/4.
The equation of a line with slope -3/4 and passing through (3, 4) is (y - 4)/(x - 3) = -3/4
=> 4(y - 4) = -3(x - 3)
=> 4y - 16 = -3x + 9
=> 3x + 4y - 25 = 0
The required equation of the radius is 3x + 4y - 25 = 0
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.