Find the equation of a line that is parallel to y = -2x + 3, and perpendicular to it passing through (-2, -3). Graph the lines.

2 Answers | Add Yours

justaguide's profile pic

justaguide | College Teacher | (Level 2) Distinguished Educator

Posted on

We have to determine the line parallel to y = -2x + 3, passing through (-2, -3). Two perpendicular lines have the same slope. The slope of y = -2x + 3 is -2. The required line is of the form y = -2x + C and passes through (-2, -3)

=> -3 = -2*-2 + C

=> C = -7

The required parallel line is y = -2x - 7

The line perpendicular to y = -2x + 3 has a slope (1/2). It is of the form y = (1/2)x + C. As it passes through (-2, -3)

=> -3 = (1/2)*-2 + C

=> C = -2

The required perpendicular line is y = x/2 - 2

The graphs of lines are:

 

The required parallel line is y = -2x - 7 and the required perpendicular line is y = x/2 - 2

brianna09's profile pic

brianna09 | Student, Undergraduate | (Level 3) Honors

Posted on

computer problem heres the rest

 

Find (a) the equation of a line that is parallel to the given line and includes the given point, and (b) the equation of a line that is perpendicular to the given line through the given point. Write both answers in slope-intercept form. (c) Graph both of these lines on the same axes and submit your graph

y = -2x + 3, (-2, -3)

We’ve answered 318,957 questions. We can answer yours, too.

Ask a question