# Find dy/dx if y=sin(tan2x)

*print*Print*list*Cite

### 1 Answer

The function `y=sin(tan 2x)` . Use the chain rule to find `dy/dx` .

`dy/dx = cos (tan 2x)*sec^2(2x)*2`

**The required derivative of `y=sin(tan2x)` is `dy/dx = 2*sec^2(2x)*cos (tan 2x)` **

*print*Print*list*Cite

The function `y=sin(tan 2x)` . Use the chain rule to find `dy/dx` .

`dy/dx = cos (tan 2x)*sec^2(2x)*2`

**The required derivative of `y=sin(tan2x)` is `dy/dx = 2*sec^2(2x)*cos (tan 2x)` **