The domain of a function y = f(x) is the set of all real values that x an take on for which y is real. If the value of x lies in the domain it is possible to plot the point (x, f(x)).

For the function `f(x) = (x+4)/(x^2-9)` ,...

## Unlock

This Answer NowStart your **48-hour free trial** to unlock this answer and thousands more. Enjoy eNotes ad-free and cancel anytime.

Already a member? Log in here.

The domain of a function y = f(x) is the set of all real values that x an take on for which y is real. If the value of x lies in the domain it is possible to plot the point (x, f(x)).

For the function `f(x) = (x+4)/(x^2-9)` , the value of f(x) is real for all real values of x except for the case when the denominator is 0.

If x^-9 = 0

x^2 = 9

x = `+- 3`

**The domain of the function `f(x) = (x+4)/(x^2 - 9)` is R - {-3, 3}**

The graph of this function is: